Basische Metalle, XLII¹⁾

Die Metall-Basizität der Komplexe $C_5Me_5Rh(PMe_3)_2$, $C_5Me_5Rh(C_2H_4)PMe_3$ und $C_5Me_5Rh(C_2H_4)P_2Me_4$: Neue Pentamethylcyclopentadienylrhodium(I)- und -rhodium(III)-Verbindungen

Bernd Klingert und Helmut Werner*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 2. August 1982

 $[C_5Me_5RhCl_2]_2$ reagiert mit Na/Hg in Gegenwart von PR₃ (PR₃ = PMe₃, PMe₂Ph, PMe₂H, P(OMe)₃) zu C₅Me₅Rh(PR₃)₂ (1-4). Aus dem Komplex C₅Me₅Rh(PMe₃)₂ (1) werden durch oxidative Addition die Verbindungen $[C_5Me_5Rh(PMe_3)_2]F_6$ (5), $[C_5Me_5RhCH_3(PMe_3)_2]I$ (6), $[C_5Me_5RhCOCH_3(PMe_3)_2]PF_6$ (7) und $[C_5Me_5Rh(PMe_3)_2]I$ (8a) synthetisiert. Durch Halogenabstraktion entsteht aus 8a und AgPF₆ in Aceton (S) der Komplex $[C_5Me_5Rh(PMe_3)_2(S)](PF_6)_2$ (10), der mit PMe₃ zu $[C_5Me_5Rh(PMe_3)_3](PF_6)_2$ (11a) reagiert. Die aus $C_5Me_5Rh(C_2H_4)_2$ und PMe₃ bzw. P₂Me₄ erhaltenen Verbindungen $C_5Me_5Rh(C_2H_4)PMe_3$ (12) und $C_5Me_5Rh(C_2H_4)_2$ und PMe₃ bzw. P₂Me₄ erhaltenen Verbindungen C₅Me₅Rh(C₂H₄)PMe₃ (12) und C₅Me₅Rh(C₂H₄)-P₂Me₄ (13) reagieren mit einer äquimolaren Menge CH₃I zu $C_5Me_5RhCH_3(PMe_3)I$ (17) bzw. $C_5Me_5RhCH_3(P_2Me_4)I$ (18). Die Umsetzung von 13 mit einem Überschuß an CH₃I führt unter Spaltung der P – P- und gleichzeitiger Knüpfung einer Rh – P-Bindung zu dem Kation $[C_5Me_5Rh(C_2H_4)PMe_2P-(E)Me_2, E = S$ (19), Se (20), und $C_5Me_5RhI_2(P_2Me_4)$ (21) wird ebenfalls beschrieben.

Basic Metals, XLII¹⁾

The Metal Basicity of the Complexes $C_5Me_5Rh(PMe_3)_2$, $C_5Me_5Rh(C_2H_4)PMe_3$, and $C_5Me_5Rh(C_2H_4)P_2Me_4$: New Pentamethylcyclopentadienylrhodium(I) and -rhodium(III) Compounds

 $[C_5Me_5RhCl_2]_2$ reacts with Na/Hg in presence of PR₃ (PR₃ = PMe₃, PMe₂Ph, PMe₂H, P(OMe₃)) to yield $C_5Me_5Rh(PR_3)_2$ (1-4). Complex $C_5Me_5Rh(PMe_3)_2$ (1) is used as starting material to form by oxidative addition the compounds $[C_5Me_5Rh(PMe_3)_2]PF_6$ (5), $[C_5Me_5RhCH_3(PMe_3)_2]I$ (6), $[C_5Me_5RhCOCH_3(PMe_3)_2]PF_6$ (7), and $[C_5Me_5RhI(PMe_3)_2]I$ (8a). Abstraction of halogen from 8a with AgPF₆ in acetone (S) gives the complex $[C_5Me_5Rh(PMe_3)_2(S)](PF_6)_2$ (10) which reacts with PMe₃ to yield $[C_5Me_5Rh(PMe_3)_3](PF_6)_2$ (11a). The compounds $C_5Me_5Rh(C_2H_4)PMe_3$ (12) and $C_5Me_5Rh(C_2H_4)P_2Me_4$ (13) which are obtained from $C_5Me_5Rh(C_2H_4)_2$ and PMe₃ or P_2Me_4 react with an equimolar amount of CH₃I to form $C_5Me_5Rh(C_3(PMe_3)I$ (17) and $C_5Me_5RhCH_3(P_2Me_4)I$ (18), respectively. The reaction of 13 with an excess of CH₃I leads by cleavage of the P – P and simultaneous formation of a Rh – P bond to the cation $[C_5Me_5Rh(C_2H_4)_PMe_2P(E)Me_2$, E = S (19), Se (20), and $C_5Me_5RhI_2(P_2Me_4)$ (21) is also described.

Halbsandwichkomplexe der allgemeinen Zusammensetzung $C_5H_5ML_2$ und C_5H_5MLL' (M = Co, Rh; L und L' = Zweielektronendonorliganden) besitzen ein nucleophiles Metallatom und reagieren mit einer Vielzahl von elektrophilen Substraten unter Knüpfung einer neuen Metall-Element-Bindung²). Die Reaktivität ist besonders ausgeprägt, wenn $L = L' = PMe_3$ ist, so daß in der Reihe der Cyclopentadienyl-Komplexe die Verbindungen $C_5H_5Co(PMe_3)_2^{3}$ und $C_5H_5Rh(PMe_3)_2^{4}$ die stärksten Metall-Basen sind.

Noch nucleophiler (d. h. noch *metall-basischer*) sollten die entsprechenden Pentamethylcyclopentadienyl-Komplexe $C_5Me_5ML_2$ und C_5Me_5MLL' sein. Wir hatten kürzlich über die Darstellung von $C_5Me_5Co(PMe_3)_2$ und $C_5Me_5Co(PMe_3)CO$ berichtet und diese Erwartung bestätigt gefunden⁵⁾. Es war uns allerdings nicht gelungen, durch Methylierung bzw. Acylierung von $C_5Me_5Co(PMe_3)_2$ Salze der Kationen [$C_5Me_5CoCH_3$ -(PMe_3)₂]⁺ bzw. [$C_5Me_5CoCOR(PMe_3)_2$]⁺ zu erhalten; in diesen Fällen ist vermutlich der Elektronentransfer von der Metall-Base auf das Elektrophil im Vergleich zu der elektrophilen Addition kinetisch begünstigt⁵⁾.

Wie würden sich nun die entsprechenden Rhodiumverbindungen $C_5Me_5Rh(PMe_3)_2$ und $C_5Me_5Rh(PMe_3)L$ verhalten? Über ihre Chemie war im Gegensatz zu derjenigen von $C_5Me_5Rh(CO)_2^{6,7)}$ bisher nichts bekannt, wenn man die Ergebnisse zur Reaktivität der von uns kürzlich beschriebenen Carbonylkomplexe $C_5Me_5Rh(CO)PMe_3$ und $C_5Me_5Rh(CO)P_2Me_4$ einmal ausnimmt⁸⁾. Wir stellen in der vorliegenden Arbeit die Verbindungen $C_5Me_5Rh(PR_3)_2$ (PR₃ = PMe₃, PMe₂Ph, PMe₂H, P(OMe)₃), $C_5Me_5Rh(C_2H_4)PMe_3$ und $C_5Me_5Rh(C_2H_4)P_2Me_4$ vor, berichten über ihr Verhalten gegenüber Elektrophilen und zeigen an einem Beispiel, daß in der Koordinationssphäre eines Metalls unter sehr schonenden Bedingungen die Spaltung einer Phosphor-Phosphor-Bindung unter gleichzeitiger Knüpfung einer Metall-Phosphor-Bindung möglich ist.

1. Neutrale und kationische Bis(phosphan)rhodium(I)- und -rhodium(III)-Komplexe

Die Reduktion von $[C_5Me_5RhCl_2]_2$ mit Zink in CO- bzw. mit Ethanol in C_2H_4 -Atmosphäre ergibt nach *Maitlis* et al.⁹⁾ die Komplexe $C_5Me_5Rh(CO)_2$ und $C_5Me_5Rh(C_2H_4)_2$. Auf ähnliche Weise, jedoch mit Na/Hg als Reduktionsmittel, gelingt die Darstellung der Verbindungen 1–4. Der Bis(trimethylphosphan)-Komplex 1 ist auch ausgehend von $[(PMe_3)_2RhCl]_2^{10}$ oder **8a** (s. u.) erhältlich.

$$[C_{5}Me_{5}RhCl_{2}]_{2} + 4L \xrightarrow{Na/Hg} 2 \xrightarrow{Rh}_{L} (1)$$

$$1: L = PMe_{3} \quad 3: L = PMe_{2}H$$

$$2: L = PMe_{2}Ph \quad 4: L = P(OMe)_{3}$$

$$[(PMe_{3})_{2}RhCl_{2} \xrightarrow{NaC_{5}Me_{5}} 1 \xrightarrow{Na/Hg}_{(3)} [C_{5}Me_{5}RhI(PMe_{3})_{2}]I$$

1 und 4 sind bei Raumtemperatur rote Feststoffe, 2 und 3 sind Öle, die sich alle in unpolaren organischen Lösungsmitteln gut lösen. Ihre Zusammensetzung ist durch Elementaranalysen und Massenspektren gesichert. (Für ¹H- und ³¹P-NMR-Daten siehe Tab. 1.)

Die ausgeprägte Metall-Basizität von 1 wird durch die rasch ablaufenden Protonierungs-, Methylierungs- und Acylierungsreaktionen bestätigt (Schema 1). Im Gegensatz zu $C_5Me_5Co(PMe_3)_2$ verhält sich der Rhodiumkomplex 1 damit auch gegenüber CH₃I und CH₃COCl "normal" und gibt die erwarteten Produkte. Mit Iod entsteht der Iodobis(phosphan)rhodium(III)-Komplex **8a**, mit CO die schon früher von uns⁸) aus $C_5Me_5Rh(CO)_2$ und PMe₃ erhaltene Verbindung $C_5Me_5Rh(CO)PMe_3$. **8a** kann auch – ebenso wie **9a** – nach Gl. (4) dargestellt werden; Umfällen mit NH₄PF₆ liefert die entsprechenden PF₆-Salze **8b**, **9b**.

Durch Halogenabstraktion entsteht aus $[C_{5}H_{5}RhI(PMe_{3})_{2}]I$ in Aceton (S) der Solvenskomplex $[C_{5}H_{5}Rh(PMe_{3})_{2}(S)](PF_{6})_{2}$ ¹⁰⁾. Analog reagieren auch **8a** und **8b** mit AgPF₆ zu $[C_{5}Me_{5}Rh(PMe_{3})_{2}(S)](PF_{6})_{2}$ (10). Das koordinierte Acetonmolekül ist leicht durch bessere Donorliganden zu verdrängen. Mit PMe_{3} bildet sich rasch $[C_{5}Me_{5}Rh(PMe_{3})_{3}](PF_{6})_{2}$ (11a). Das Chlorid des Dikations $[C_{5}Me_{5}Rh(PMe_{3})_{3}]^{2+}$ (11b) ist auch aus $[C_{5}Me_{5}RhCl_{2}]_{2}$ und überschüssigem PMe_{3} erhältlich; es kann mit NH₄PF₆ zu **11a** umgefällt werden. Die in Schema 2 zusammengefaßten Komplexsalze sind entweder völlig oder zumindest weitgehend luftstabil und nicht nur elementaranalytisch sondern auch durch Leitfähigkeitsmessungen und NMR-Daten (Tab. 1) charakterisiert.

Schema 2
10
$$\xrightarrow{PMe_3}$$
 [C₅Me₅Rh(PMe₃)₃](PF₆)₂ $\xrightarrow{PMe_3}$ [C₅Me₅Rh(S)₃](PF₆)₂
11a
 \uparrow NH₄PF₆
[C₅Me₅RhCl₂]₂ $\xrightarrow{PMe_3}$ [C₅Me₅Rh(PMe₃)₃]Cl₂
11b

Kom-	Sol-	CeMe			P.R.				RhR		PA	~
plex	vens ^{a)}	ξ	н _d	J_{RhH}	8	J_{RhH}	Ν	8	$J_{ m PH}$	J _{RhH}	8	J _{RhP}
-	в	2.16 (dt)	1.7	0.5	1.30 (dvt)	1.1	7.6				– 7.33 (d)	215.9
7	В	1.95 (dt)	1.8	0.5	1.30 (dvt) 7.5 (m)	1.2	7.3				12.81 (d)	220.3
e	В	2.16 (dt)	2.1	0.5	1.35 (ddd) ^{b)}	1.3					– 20.20 (d)	214.4
4	В	2.22 (dt)	2.8	0.5	3.55 (vt)		12.1				157.24 (d)	320.1
5	z	2.00 (ddt) ^{c)}	2.7	0.4	1.60 (dvt)	1.0	10.4	- 13.3 (dt)	36.5	22.5	– 2.87 (d)	137.0
9	z	1.83 (dt)	2.8	0.4	1.55 (dvt)	0.9	10.2	0.15 (dt)	3.6	1.2	0.57 (d)	142.9
٢	z	1.90 (dt)	2.7	0.4	1.63 (dvt)	1.0	10.0	2.50 (t)	0.6		– 3.69 (d)	154.8
8a	z	2.00 (t)	3.2		-1.80 (dvt)	0.7	10.7				– 3.88 (d)	134.0
9a	z	1.80 (t)	3.2		1.70 (dvt)	0.7	11.0				0.80 (d)	132.5
10	D ^{d)}	1.90 (t)	3.2		1.70 (dvt)	0.7	10.8					
11b	z	2.05 (q)	3.4		1.85 (dvt)	0.7	10.6				– 6.88 (d)	123.6

Chem. Ber. 116 (1983)

97

2. Synthese und Eigenschaften der Ethen-Komplexe $C_5Me_5Rh(C_2H_4)L$ (L = PMe₃, P₂Me₄)

Die Erfahrungen, die wir bezüglich der Reaktivität des Cyclopentadienylrhodium-Komplexes $C_5H_5Rh(C_2H_4)PMe_3$ gewonnen hatten¹¹⁾ (der u. a. die Synthese von Rh-Carbenoid-¹²⁾, Rh-CS₂-¹³⁾, Rh-CSSe-¹⁴⁾ und Rh-CS-Verbindungen¹⁴⁾ ermöglicht), veranlaßten uns, auch den analogen Vertreter aus der C_5Me_5 -Reihe (12) sowie das Pendant mit P₂Me₄ statt PMe₃ (13) darzustellen. Dies gelingt ausgehend von $C_5Me_5Rh(C_2H_4)_2^{9a}$. Bei 120 °C beträgt die Reaktionszeit für die Darstellung von 12 24 Stunden, für diejenige von 13 dagegen 5 Tage. Bei der Umsetzung mit P₂Me₄ entsteht zusätzlich eine geringe Menge des Zweikernkomplexes 14. Die Trimethylphosphan-Verbindung 12 läßt sich auch aus $[(C_2H_4)PMe_3RhCl]_2^{11}$ und NaC₅Me₅ gewinnen. 12 und 13 sind sowohl in Lösung als auch in fester Form luftempfindlich, während 14 an Luft ziemlich stabil ist. 13 zersetzt sich selbst unter Stickstoff langsam bei Raumtemperatur. Die zu 12 analoge Triphenylphosphan-Verbindung C₅Me₅Rh(C₂H₄)PPh₃ haben *Diversi* et al. zuerst bei der Reaktion von C₅Me₅RhI₂(PPh₃) mit BrMg[CH₂]₄MgBr erhalten^{15a)}, wobei die Quelle für den C₂H₄-Liganden überraschenderweise das Solvens Et₂O ist. Die Darstellung ist auch aus C₅Me₅Rh(C₂H₄)₂ und PPh₃ möglich^{15b)}.

Erwartungsgemäß ist in dem Ethen-Komplex 12 der Olefinligand leicht substituierbar. Mit PMe₃ entsteht – allerdings erst nach mehrtägigem Erwärmen in Benzol – die Verbindung 1, mit CS₂ bereits bei Raumtemperatur der Komplex C₅Me₅Rh(η^2 -CS₂)-

Chem. Ber. 116 (1983)

PMe₃ (15). Die *dihapto*-Koordination des Schwefelkohlenstoffs in 15, analog wie in $C_5H_5Rh(\eta^2-CS_2)PMe_3^{13}$, steht aufgrund der spektroskopischen Daten außer Zweifel.

Der Verlauf der Umsetzung von 12 mit Methyliodid ist solvensabhängig. In Ether erhält man den analytisch gesicherten, salzartigen Komplex $[C_5Me_5RhCH_3(C_2H_4)PMe_3]I$ (16), der in fester Form langsam, in Nitromethan- oder Aceton-Lösung dagegen sehr rasch Ethen abspaltet. Unter gleichzeitiger Koordination des Iodidanions bildet sich die Neutralverbindung $C_5Me_5RhCH_3(PMe_3)I$ (17). Wegen der Labilität von 16 ist keine Leitfähigkeitsmessung und keine Aufnahme von NMR-Spektren möglich. 17 ist ein roter, kristallisierter, luftstabiler Feststoff, der auch direkt aus 12 und Methyliodid in Benzol entsteht (Schema 3).

Die Untersuchungen zur Reaktivität des Tetramethyldiphosphan-Komplexes 13 erbrachten einige überraschende Resultate. Unter den gleichen Bedingungen (Benzol, 25° C), unter denen die Carbonylverbindung C₅Me₅Rh(CO)P₂Me₄ mit einer äquimolaren Menge Methyliodid zu C₅Me₅RhCOCH₃(P₂Me₄)I reagiert⁸⁾, setzt sich 13 unter Abspaltung von C₂H₄ zu C₅Me₅RhCH₃(P₂Me₄)I (18) um. Selbst in Ether als Solvens läßt sich ein ionischer Komplex [C₅Me₅RhCH₃(C₂H₄)P₂Me₄]I nicht eindeutig nachweisen. Die Bildung der in Form dunkelroter Kristalle isolierten Verbindung 18 zeigt, daß auch in 13 das Metall nucleophiler als das nicht koordinierte Phosphoratom P² ist.

Mit überschüssigem Methyliodid reagiert 13, sehr wahrscheinlich über 18 als Zwischenstufe, zu $[C_5Me_5RhI(PMe_3)_2]I(8a)$. Es ist anzunehmen, daß bei der Umwandlung von 18 in 8a primär das Phosphoratom P² methyliert wird und danach unter Wanderung der P²Me₃-Gruppe an das Metall und *gleichzeitiger* Knüpfung der H₃C – P¹Me₂-Bindung das Kation $[C_5Me_5RhI(PMe_3)_2]^+$ entsteht. Deuterierungsexperimente stützen diesen Vorschlag zum Reaktionsmechanismus (Schema 4). Bei der Einwirkung von CD₃I auf 13 bildet sich der Komplex C₅Me₅RhCD₃(P₂Me₄)I ([D₃]-18), dessen ¹H-NMR-

Kom- plex	Ś	C ₅ Me ₅ J _{PlH}	$J_{\rm ghH}$	ø	¹ Р <i>Ме</i> 2 <i>Ј</i> рін	$J_{ m p^2H}$	J _{RhH}	8	² PA J _{P¹H}	de ₂ J _{p²H}	$C_2^{H_4}$
12	2.00 (dd)	2.0	0.5	0.95 (dd)	8.2		1.0				1.77 (m) ^{a)}
13	2.05 (dd)	1.9	0.5	1.00 (ddd)	7.4	6.0	1.2	1.05 (dd)	4.1	11.8	1.70 (dd) ^{b)} 1.85 (dd) ^{c)}
14	1.93 ^{d)}		0.5	1.25 (m) ^{e)}				1.25 (m) ^{e)}			, G
15	1.75 (dd)	2.4	0.5	1.03 (dd)	9.8		1.0				
17 8)	1.70 (dd)	2.8	0.5	1.32 (dd)	9.8		0.9				
18 ^{h)}	1.85 (dt)	2.6	0.4	1.35 (ddd) ⁱ⁾	8.8	4.2	1.1	(i(bb) 00.0	4.5	12.0	
		0.4		1.60 (ddd) ⁱ⁾	9.2	5.0	0.9	1.10 (dd) ⁱ⁾	4.5	11.6	
19	1.76 (ddd)	(j0)	0.5	1.23 (ddd)	11.6	9.9	1.1	1.53 (dd)	4.9	11.6	k)
20	1.80 (ddd)	1.8j)	0.5	1.20 (ddd)	11.6	6.0	1.1	1.75 (dd)	4.5	11.6	k)
21	1.95 (d)	3.0		1.85 (ddd)	9.6	3.6	0.9	1.30 (dd)	4.6	11.8	
a) Nach 31 7.2 Hz, $J_{\rm r}$ e) Nach 31 h) RhCH $_3$ von den P	P-Entkopplung hH = 2.0 Hz P-Entkopplung : 8 = 1.15 (dd), 2Me4-Signalen v	zwei Signale ^{d)} Signal en Dublett, J_{Rh}^{n} , $J_{PlH}^{n} = 6.6$	bei $\delta = 1.7$ tsteht durch H = 1.0 Hz Hz, $J_{RhH} =$	$(13 (d), J_{RhH} = 2.3 (d), J_{RhH} = 2.3 (d)$	Hz; 1.80 (d dvt ($N = 2$ genau lok tereotope \mathbb{N}	I), J _{RhH} 2.2, J _{Rh} alisierba Methylgı	$= 1.8 H_{\rm I}$ $= 1.8 H_{\rm I}$ $= 0.5 H_{\rm II}$ $= 0.5 H_{\rm II}$ $= 0.5 H_{\rm II}$ $= 0.5 H_{\rm II}$	$\begin{array}{l} (1 - 1) J_{p1H} = 1, \\ (2) \ \text{und} \ \text{dt} \ (J_{p1H} = 1, \\ (J_{p1H} = 1), \\ (J_{p2H} = 0, 85 \\ (J_{p2H} = 0, 8 \\ H \end{array}$	$\begin{array}{c} 5 \text{ Hz, } J_{\text{RhH}} \\ 1.7, J_{\text{p2H}} \\ (\text{dd}), J_{\text{pH}} \\ \text{z k)} \\ \text{Sig} \end{array}$	= 2.3 Hz = 0.5, <i>J</i> _{RhH} = 6.9, <i>J</i> _{RhH} gnal der C	$\begin{array}{rcl} & - & c^{0} & J_{p_{1}H} & = \\ & = & 0.5 \text{ Hz}, & - \\ & = & 2.3 \text{ Hz}, & - \\ & & 2H_{4}\text{-} \text{Protonen} \end{array}$

Spektrum mit Ausnahme des fehlenden Signals der RhCH₃-Protonen mit demjenigen von **18** übereinstimmt. Die Zusammensetzung von $[D_3]$ -**18** wird darüber hinaus auch durch das Massenspektrum bestätigt. Sowohl bei der Umsetzung von $[D_3]$ -**18** mit CH₃I als auch bei der Reaktion von **18** mit CD₃I erhält man $[C_5Me_5RhI(PMe_3)(PMe_2CD_3)]I$ ($[D_3]$ -**8a**), jedoch kein deuteriumreicheres Produkt, was für eine *intra*molekulare Bildung der beiden Trimethylphosphanliganden in der Koordinationssphäre des gleichen Metallatoms spricht. Das Auftreten von *freiem* PMe₃ bzw. PMe₂CD₃ scheidet aus, da diese Moleküle mit CH₃I bzw. CD₃I sofort zu dem entsprechenden Phosphoniumiodid reagieren würden, was aber nicht nachweisbar ist.

Die Umsetzungen von 13 mit Schwefel bzw. Selen ergeben gemäß Gl. (9) die Verbindungen 19, 20. Es sind gelbbraune, luftempfindliche Feststoffe, die sich in unpolaren organischen Solvenzien nur mäßig lösen. Mit I₂ reagiert 13 unter Ethenabspaltung zu dem Diiodorhodium(III)-Komplex 21, der weinrote, luftstabile Kristalle bildet. Die ¹H- und ³¹P-NMR-Daten der Verbindungen 12 – 15 und 17 – 21 sind in Tab. 2 und 3 angegeben.

$$C_{5}Me_{5}Rh(C_{2}H_{4})PMe_{2}P(E)Me_{2} \xleftarrow{I/8}E_{8} 13 \xrightarrow{I_{2}} C_{5}Me_{5}RhI_{2}(P_{2}Me_{4}) + C_{2}H_{4}$$

$$19: E = S$$

$$21$$

$$20: E = Se$$

Tab. 3. ³¹P-NMR-Daten der Komplexe 12-15, 17-21, in C₆D₆ (δ in ppm, 85proz. Phosphorsäure ext.; J in Hz)

Variation		P^1		,	2
Komplex	δ	J _{P¹Rh}	$J_{\mathrm{P}^{1}\mathrm{P}^{2}}$	δ	$J_{\mathrm{P}^{2}\mathrm{Rh}}$
12	-2.84 (d)	201.0			
13	-4.49 (dd)	199.5	241.2	- 64.29 (dd)	4.5
14	19.87 ^{a)}		127.8		
15	- 5.60 (d)	184.6			
17	4.02 (d)	156.3			
18	- 10.09 (dd)	154.8	270.9	-62.80 (dd)	7.4
19	8.37 (dd)	206.9	132.5	35.95 (dd)	7.4
20	8.39 (dd)	198.0	151.8	18.28 (dd)	16.4
21	-15.91 (dd)	137.0	290.3	- 58.13 (dd)	6.0

^{a)} Spektrum vom XAA'X'-Typ; ${}^{1}J_{PRh} = 198.2 \text{ Hz}, {}^{2}J_{PRh} = 2.6 \text{ Hz}.$

Unser Dank richtet sich an die Deutsche Forschungsgemeinschaft und an den Verband der Chemischen Industrie für die großzügige Unterstützung mit Personal- und Sachmitteln. Darüber hinaus sind wir den Firmen BASF-Aktiengesellschaft und DEGUSSA für wertvolle Chemikalienspenden sehr verbunden. Frau Dr. G. Lange danken wir für die Massenspektren, Herrn Dr. W. Buchner und Herrn C. P. Kneis für die ³¹P-NMR-Messungen sowie Frau U. Neumann und Fräulein R. Schedl für die Ausführung von Elementaranalysen.

Experimenteller Teil

Alle Arbeiten wurden unter Luftabschluß mit gereinigtem Stickstoff oder Argon als Inertgas durchgeführt. Die Verbindungen NaC₅Me₅¹⁶, $[C_5Me_5RhX_{2}]_2$ (X = Cl, I)¹⁷, $[C_5Me_5Rh(S)_3]$ -

 $(PF_{6})_{2}$ (S = Aceton)¹⁸), C₅Me₅Rh(C₂H₄)₂^{9a}), [(C₂H₄)₂RhCl]₂¹⁹) und [(C₈H₁₄)₂RhCl]₂²⁰) wurden nach Literaturangaben dargestellt. – NMR: Varian T 60, XL 100 und Bruker WH 90. – IR: Perkin-Elmer 283 und 397. – MS: Varian MAT CH 7 (70 eV). – Äquivalentleitfähigkeit Λ in Nitromethan.

(Pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(1) (1): (a) 115 mg Natrium (5.0 mmol) werden portionsweise zu 3 ml Quecksilber (203 mmol) gegeben, und das gebildete Amalgam wird nach Abkühlen auf Raumtemp. mit 30 ml Ether überschichtet. Es werden dann zuerst 456 μ l PMe₃ (4.5 mmol) und danach 618 mg [C₃Me₅RhCl₂]₂ (1.0 mmol) zugegeben. Die Mischung wird 4 h bei Raumtemp. gerührt, filtriert und das Filtrat i. Vak. zur Trockne gebracht. Der Rückstand wird mit 20 ml Pentan extrahiert, der Extrakt filtriert und auf ca. 5 ml eingeengt. Nach Abkühlen auf – 78 °C erhält man rote Kristalle, die noch einmal aus Pentan umkristallisiert und i. Vak. getrocknet werden. Ausb. 630 mg (81%).

(b) Eine Lösung von 358 mg $[(C_8H_{14})_2RhCl]_2$ (0.5 mmol) in 10 ml THF wird mit 203 µl PMe₃ (2.0 mmol) 30 min bei Raumtemp. gerührt, danach mit 5 ml einer 0.3 molaren Lösung von NaC₅Me₅ in THF versetzt und nochmals 4 h gerührt. Nach Abziehen der flüchtigen Bestandteile wird der Rückstand mit 20 ml Pentan extrahiert, die Lösung filtriert und auf ca. 5 ml eingeengt. Die weitere Aufarbeitung erfolgt wie unter (a) beschrieben. Ausb. 117 mg (30%).

(c) 18 mg Natrium (0.8 mmol) werden zu 1 ml Quecksilber (77 mmol) gegeben, und das gebildete Amalgam wird nach Abkühlen auf Raumtemp. mit 20 ml Ether überschichtet. Nach Zugabe von 100 mg $[C_5Me_5RhI(PMe_3)_2]I$ (8a) (0.16 mmol) wird die Reaktionsmischung 5 h bei Raumtemp. gerührt, filtriert und das Filtrat i. Vak. zur Trockne gebracht. Die weitere Aufarbeitung erfolgt wie unter (a) beschrieben. Ausb. 21 mg (33%). – Schmp. 100°C. – MS: m/e = 390 (53%); M⁺), 314 (100; M⁺ – PMe_3), 238 (16; C₅Me₅Rh⁺).

C16H33P2Rh (390.3) Ber. C 49.24 H 8.52 Rh 26.37 Gef. C 49.08 H 8.33 Rh 26.57

Die Darstellung der Komplexe 2 - 4 erfolgt analog wie für 1 unter (a) beschrieben. Man erhält 2 und 3 als rote Öle, 4 als orangefarbene Kristalle. Ausb. 65 - 75%.

(Pentamethylcyclopentadienyl)bis(dimethylphenylphosphan)rhodium(I) (2)

C₂₆H₃₇P₂Rh (514.4) Ber. C 60.71 H 7.25 Rh 20.00 Gef. C 60.56 H 7.34 Rh 19.78

(Pentamethylcyclopentadienyl)bis(dimethylphosphan)rhodium(I) (3)

C₁₄H₂₉P₂Rh (362.2) Ber. C 46.42 H 8.07 P 17.10 Gef. C 46.26 H 7.95 P 17.25

(Pentamethylcyclopentadienyl)bis(trimethylphosphit)rhodium(I) (4): Schmp. 189°C. – MS: $m/e = 486 (56\%; M^+), 456 (14; M^+ - C_2H_6), 362 [100; M^+ - P(OMe)_3], 238 (29; C_5Me_5Rh^+).$ $C_{16}H_{13}O_6P_2Rh$ (486.3) Ber. C 39.52 H 6.84 Rh 21.16 Gef. C 39.41 H 6.60 Rh 21.17

Reaktion von $C_5Me_5Rh(PMe_3)_2$ (1) mit CO: In die im NMR-Rohr befindliche Lösung von 20 mg 1 (0.05 mmol) in 0.5 ml Benzol wird bei Raumtemp. 1 h CO eingeleitet. Das danach von der Lösung aufgenommene ¹H-NMR-Spektrum stimmt mit dem einer Probe von $C_5Me_5Rh(CO)$ -PMe₃⁸⁾ überein.

Hydrido(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-hexafluorophosphat (5): Eine Lösung von 170 mg 1 (0.44 mmol) in 2 ml Ethanol wird mit 71 mg NH₄PF₆ (0.44 mmol) versetzt. Der sofort ausfallende Niederschlag wird nach Dekantieren mehrmals mit Ethanol, Ether und Pentan gewaschen und i. Vak. getrocknet. Farblose Kristalle. Ausb. 116 mg (50%). – $\Lambda = 85 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

 $C_{16}H_{34}F_6P_3Rh$ (536.3) Ber. C 35.84 H 6.39 Rh 19.19 Gef. C 36.06 H 6.62 Rh 19.42

Methyl(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-iodid (6): Eine Lösung von 70 mg 1 (0.18 mmol) in 10 ml Ether wird unter Rühren tropfenweise mit 28 mg CH₃I (0.2 mmol) versetzt. Der sofort ausfallende Niederschlag wird nach 10 min dekantiert, mehrmals mit Ether gewaschen und getrocknet. Nach Umkristallisation aus Nitromethan/Ether erhält man hellgelbe Kristalle. Ausb. 70 mg (73%). Schmp. 214°C (Zers.). $-\Lambda = 78 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

C17H36IP2Rh (532.2) Ber. C 38.36 H 6.82 Rh 19.33 Gef. C 38.29 H 6.56 Rh 19.43

Acetyl(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-hexafluorophosphat (7): Eine Lösung von 180 mg 1 (0.46 mmol) in 10 ml Ether wird unter Rühren tropfenweise mit 36 mg CH₃COCl (0.46 mmol) versetzt. Der sofort ausfallende Niederschlag wird abfiltriert, mehrmals mit Ether gewaschen und getrocknet. Nach Umfällen mit NH₄PF₆ in Methanol und Umkristallisation aus Nitromethan/Ether erhält man hellgelbe Kristalle. Ausb. 167 mg (63%). – IR (KBr): $v_{CO} = 1633 \text{ cm}^{-1}$. – $\Lambda = 90 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

C₁₈H₃₆F₆OP₃Rh (578.3) Ber. C 37.39 H 6.27 Rh 17.79 Gef. C 37.48 H 6.06 Rh 17.70

Iodo(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-iodid (8a): (a) Eine Lösung von 78 mg 1 (0.2 mmol) in 10 ml Ether wird tropfenweise mit einer Lösung von 51 mg Iod (0.2 mmol) in 5 ml Ether versetzt. Der sofort ausfallende Niederschlag wird mit Ether und Pentan gewaschen und i. Vak. getrocknet. Man erhält orangegelbe, luftstabile Kristalle. Ausb. 101 mg (78%).

(b) Eine Lösung von 98 mg $[C_5Me_5RhI_2]_2$ (0.1 mmol) in 10 ml Aceton wird mit 41 µl PMe₃ (0.4 mmol) 15 h bei Raumtemp. gerührt. Das Solvens wird i. Vak. entfernt und der Rückstand aus Nitromethan/Ether umkristallisiert. Ausb. 117 mg (91%).

(c) Eine Lösung von 251 mg **18** (0.5 mmol) in 10 ml Benzol wird mit 710 mg CH₃I (5.0 mmol) 24 h bei Raumtemp. gerührt. Es entsteht ein orangefarbener Niederschlag, der nach dem Trocknen aus Nitromethan/Ether umkristallisiert wird. Ausb. 225 mg (70%). Schmp. 204 °C (Zers.). – $\Lambda = 69 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

C₁₆H₃₃I₂P₂Rh (644.1) Ber. C 29.84 H 5.16 Rh 15.98 Gef. C 29.68 H 5.03 Rh 15.63

Iodo(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-hexafluorophosphat (**8b**) gewinnt man durch Umfällen von **8a** mit einer äquimolaren Menge NH_4PF_6 in wenig Methanol. Die ausfallenden Kristalle werden mit Methanol, Ether und Pentan gewaschen und i. Vak. getrocknet. Ausb. 70%. $-\Lambda = 72 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

C16H33F6IP3Rh (662.2) Ber. C 29.02 H 5.02 Rh 15.54 Gef. C 28.56 H 4.69 Rh 15.32

Chloro(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-chlorid (9a) und -hexafluorophosphat (9b): Eine Suspension von 432 mg $[C_5Me_5RhCl_2]_2$ (0.7 mmol) in 10 ml Aceton wird mit 284 µl PMe₃ (2.8 mmol) versetzt und 5 h bei Raumtemp. gerührt. Es entsteht ein gelber Niederschlag, der nach Abziehen der flüchtigen Bestandteile aus Aceton/Ether umkristallisiert wird. Ausb. 523 mg (81%) 9a. Schmp. 187 °C (Zers.).

C₁₆H₃₃Cl₂P₂Rh (461.2) Ber. C 41.67 H 7.21 Rh 22.31 Gef. C 40.88 H 7.37 Rh 22.22

Die Darstellung von 9b folgt, ausgehend von 9a, der Beschreibung für 8b. Gelbe Kristalle. Ausb. 84%. – $\Lambda = 72 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

C₁₆H₃₃ClF₆P₃Rh (570.7) Ber. C 33.67 H 5.83 Rh 18.03 Gef. C 33.88 H 5.74 Rh 17.73

(Aceton)(pentamethylcyclopentadienyl)bis(trimethylphosphan)rhodium(III)-bis(hexafluorophosphat) (10): Eine Lösung von 146 mg 8a (0.22 mmol) in 5 ml Aceton wird mit 115 mg AgPF₆ (0.45 mmol) versetzt und 10 min gerührt. Der gebildete Niederschlag (AgI) wird abfiltriert, mit Aceton gewaschen und das Filtrat i. Vak. auf ca. 5 ml eingeengt. Nach Zugabe von Ether erhält

man orangefarbene Kristalle, die mit Ether und Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 120 mg (74%). – $\Lambda = 174 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

 $C_{19}H_{39}F_{12}OP_4Rh$ (783.3) Ber. C 30.91 H 5.32 Rh 13.94 Gef. C 30.70 H 5.44 Rh 13.83

(Pentamethylcyclopentadienyl)tris(trimethylphosphan)rhodium(III)-bis(hexafluorophosphat) (11a): (a) Eine Suspension von 123 mg $[C_5Me_5RhCl_2]_2$ (0.2 mmol) in 10 ml Aceton wird mit 215 mg AgPF₆ (0.85 mmol) versetzt und der rasch ausfallende Niederschlag (AgCl) nach 10 min filtriert. Das Filtrat wird mit 121 µl PMe₃ (1.2 mmol) versetzt und 10 min gerührt. Nach Einengen der Lösung auf ca. 5 ml und Zugabe von Ether bilden sich gelbe Kristalle, die abfiltriert und i. Vak. getrocknet werden. Ausb. 223 mg (74%).

(b) Eine Lösung von 66 mg **8b** (0.1 mmol) in 10 ml Aceton wird mit 30 mg AgPF₆ (0.12 mmol) versetzt und der rasch ausfallende Niederschlag (AgI) nach 10 min filtriert. Die Weiterverarbeitung des Filtrats erfolgt wie unter (a) beschrieben. Die mit Ether gefällten Kristalle werden noch einmal aus Nitromethan/Ether umkristallisiert. Ausb. 45 mg (54%). $-\Lambda = 173 \text{ cm}^2 \Omega^{-1} \text{ mol}^{-1}$.

C₁₉H₄₂F₁₂P₅Rh (756.3) Ber. C 30.17 H 5.60 Rh 13.61 Gef. C 30.25 H 5.67 Rh 13.72

(Pentamethylcyclopentadienyl)tris(trimethylphosphan)rhodium(III)-dichlorid (11b): Eine Suspension von 450 mg $[C_5Me_5RhCl_2]_2$ in 10 ml Aceton wird mit 507 µl PMe₃ (5.0 mmol) 5 h gerührt. Dabei fällt ein gelber Niederschlag aus. Nach Abziehen der flüchtigen Bestandteile wird der Rückstand aus Nitromethan/Ether umkristallisiert. Man erhält hellgelbe luftstabile Kristalle, die NMR-spektroskopisch charakterisiert werden. Das ¹H-NMR-Spektrum (in CD₃NO₂) stimmt überein mit demjenigen von **11a** (siehe Tab. 1). Ausb. 758 mg (97%). Umfällen mit NH₄PF₆ in Methanol ergibt quantitativ **11a**.

(Ethen)(pentamethylcyclopentadienyl)(trimethylphosphan)rhodium(I) (12): (a) Eine Lösung von 441 mg $C_5Me_5Rh(C_2H_4)_2$ (1.5 mmol) in 10 ml Benzol wird mit 228 µl PMe₃ (2.25 mmol) versetzt und 24 h bei 120 °C gerührt. Die zunächst gelbe Lösung nimmt dabei orange Farbe an. Nach Abziehen der flüchtigen Bestandteile i. Vak. wird der verbleibende Feststoff mit 10 ml Pentan extrahiert und die Lösung filtriert. Das Filtrat wird auf ca. 5 ml eingeengt und auf -78 °C gekühlt. Es bilden sich orangefarbene Kristalle, die noch einmal aus Pentan umkristallisiert werden. Ausb. 456 mg (89%).

(b) Eine Lösung von 778 mg $[(C_2H_4)_2RhCl]_2$ (2.0 mmol) in 10 ml THF wird mit 415 µl PMe₃ (4.1 mmol) versetzt und 30 min bei Raumtemp. gerührt. Danach werden 15 ml einer 0.3 molaren Lösung von NaC₅Me₅ in THF zugegeben und weitere 4 h bei Raumtemp. gerührt. Nach Abziehen des Solvens wird der Rückstand in 5 ml Pentan suspendiert und über Al₂O₃ (Woelm, neutral, Aktivitätsstufe V) chromatographiert. Die Aufarbeitung des Eluats erfolgt wie unter (a) beschrieben. Ausb. 479 mg (35%). Schmp. 58°C. – MS: m/e = 342 (19%; M⁺), 314 (100; M⁺ – C_2H_4), 238 (21; C₅Me₅Rh⁺).

C₁₅H₂₈PRh (342.3) Ber. C 52.64 H 8.25 Rh 30.07 Gef. C 52.51 H 8.38 Rh 29.96

(Ethen)(pentamethylcyclopentadienyl)(tetramethyldiphosphan)rhodium(1) (13) und μ -(Tetramethyldiphosphan)-bis[(ethen)(pentamethylcyclopentadienyl)rhodium(1)] (14): Eine Lösung von 1.0 g C₅Me₅Rh(C₂H₄)₂ (3.4 mmol) in 10 ml Benzol wird mit einem Überschuß (ca. 1 ml) P₂Me₄ 5 d bei 120 °C gerührt. Die gelbe Lösung nimmt dabei langsam rote Farbe an. Nach Abziehen der flüchtigen Bestandteile wird der Rückstand mit Pentan extrahiert. Das Filtrat wird i. Vak. auf ca. 5 ml eingeengt und auf - 78 °C gekühlt. Man erhält rote luftempfindliche Kristalle von 13, die noch zweimal aus Pentan umkristallisiert werden. Ausb. 910 mg (69%). Der nach der Extraktion mit Pentan verbleibende Rückstand wird in Benzol gelöst und über Al₂O₃ (Woelm, neutral, Aktivitätsstufe V) chromatographiert. Nach dem Abziehen des Solvens erhält man rote Kristalle von 14. Ausb. 56 mg (5%). 13: Schmp. 55 °C. – MS: m/e = 388 (5%, M⁺), 360 (100; M⁺ – C₂H₄), 314 (22; C₅Me₅RhPMe₃⁺), 300 (48; C₅Me₅RhPMe₂H⁺), 238 (28; C₅Me₅Rh⁺).

C₁₆H₃₁P₂Rh (388.3) Ber. C 49.50 H 8.05 Rh 26.50 Gef. C 49.12 H 8.12 Rh 25.91

14: Schmp. 184 °C. – MS: $m/e = 654 (1\%; M^+), 626 (16; M^+ - C_2H_4), 598 (100; M^+ - 2C_2H_4), 583 (82; M^+ - 2C_2H_4 - CH_3), 416 [18; C_5Me_5Rh(P_2Me_4)C_4H_8^+], 373 [13; (C_5Me_5)_2Rh^+], 238 (13; C_5Me_5Rh^+).$

C28H50P2Rh2 (654.5) Ber. C 51.39 H 7.70 Gef. C 51.51 H 8.06

(Carbondisulfid)(pentamethylcyclopentadienyl)(trimethylphosphan)rhodium(1) (15): Eine Lösung von 186 mg 12 (0.54 mmol) in 10 ml Benzol wird mit 44 μ l CS₂ (0.74 mmol) versetzt und 15 h bei Raumtemp. gerührt. Nach Abziehen der flüchtigen Bestandteile i. Vak. wird der Rückstand mit Ether extrahiert und die Lösung filtriert. Das Filtrat wird auf ca. 5 ml eingeengt und auf - 78 °C gekühlt. Man erhält rote Kristalle, die mit Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 126 mg (60%). Schmp. 95 °C (Zers.). - IR (KBr): $v_{CS} = 1160, 1143 \text{ cm}^{-1}$. - MS: $m/e = 390 (17\%; M^+)$, 358 (44; M⁺ - S), 314 (100; M⁺ - CS₂), 282 (30; C₅Me₅RhCS⁺), 238 (27; C₅Me₅Rh⁺).

C14H24PRhS2 (390.3) Ber. C 43.08 H 6.20 Rh 26.36 Gef. C 43.10 H 6.23 Rh 26.27

(Ethen)(methyl)(pentamethylcyclopentadienyl)(trimethylphosphan)rhodium(III)-iodid (16): Eine Lösung von 118 mg 12 (0.35 mmol) in 10 ml Ether wird unter Rühren tropfenweise mit einer Lösung von 57 mg CH₃I (0.40 mmol) in 3 ml Ether versetzt. Der sofort ausfallende rosafarbene Niederschlag wird mit Ether und Pentan gewaschen und i. Vak. getrocknet. Ausb. 64 mg (38%). Schmp. 110 °C (Zers.).

C16H31IPRh (484.2) Ber. C 39.69 H 6.45 Rh 21.25 Gef. C 38.86 H 6.74 Rh 21.09

Iodo(methyl)(pentamethylcyclopentadienyl)(trimethylphosphan)rhodium(III) (17): Eine Lösung von 85 mg 12 (0.25 mmol) in 5 ml Benzol wird mit 710 mg CH₃I (5.0 mmol) versetzt und 2 h bei Raumtemp. gerührt. Der zunächst gebildete Niederschlag geht während dieser Zeit wieder in Lösung. Nach Abziehen der flüchtigen Bestandteile i. Vak. wird der verbleibende rote Feststoff mit 10 ml Ether extrahiert und die Lösung filtriert. Das Filtrat wird auf ca. 5 ml eingeengt und auf $-78 \,^{\circ}$ C gekühlt. Man erhält dunkelrote, luftstabile Kristalle, die mit Pentan gewaschen und i. Vak. getrocknet werden. Ausb. 92 mg (81%). Schmp. 178 $^{\circ}$ C (Zers.). $-MS: m/e = 456 (13\%; M^+), 441 (80; M^+ - CH_3), 365 (100; C₅Me₅RhI⁺), 314 (6; C₅Me₅RhPMe₃⁺), 237 (30; C₅Me₄CH₂Rh⁺).$

C14H27IPRh (456.1) Ber. C 36.86 H 5.97 Rh 22.56 Gef. C 36.96 H 5.77 Rh 22.22

Iodo(methyl)(pentamethylcyclopentadienyl)(tetramethyldiphosphan)rhodium(III) (18): Eine Lösung von 183 mg 13 (0.47 mmol) in 5 ml Benzol wird mit 67 mg CH₃I (0.47 mmol) versetzt und 3 h bei Raumtemp. gerührt. Dabei ist eine langsame Gasentwicklung zu beobachten; in der Lösung ist NMR-spektroskopisch C_2H_4 nachweisbar. Die weitere Aufarbeitung erfolgt wie für 17 beschrieben. Nach Umkristallisieren aus Ether erhält man wiederum dunkelrote Kristalle. Ausb. 169 mg (72%). Schmp. 105 °C. – MS: m/e = 502 (6%, M⁺), 487 (52; M⁺ – CH₃), 441 (5; M⁺ – PMe₂), 380 [7; $C_5Me_5RhCH_3(I)^+$], 365 (100; $C_5Me_5RhI^+$), 360 (8; $C_5Me_5RhP_2Me_4^+$), 237 (50; $C_5Me_4CH_2Rh^+$).

C15H30IP2Rh (502.2) Ber. C 35.88 H 6.02 Rh 20.49 Gef. C 36.38 H 6.24 Rh 20.49

Die Darstellung von $[D_3]$ -18 erfolgt analog, ausgehend von 13 und CD_3I . – MS: m/e = 505 (3%; M⁺), 487 (26; M⁺ – CD₃), 444 (3; M⁺ – PMe₂), 383 [8; C₅Me₅RhCD₃(I)⁺], 365 (100; C₅Me₅RhI⁺), 237 (60; C₅Me₄CH₂Rh⁺).

(Ethen)(pentamethylcyclopentadienyl)(tetramethyldiphosphan- P^2 -sulfid- P^1)rhodium(I) (19): Eine Lösung von 150 mg 13 (0.39 mmol) in 5 ml Benzol wird mit 18 mg S₈ (0.55 mmol) versetzt und 1 h bei 60 °C gerührt. Nach Abziehen des Lösungsmittels wird der Rückstand mit 20 ml Ether extrahiert und die Lösung filtriert. Das Filtrat wird auf ca. 5 ml eingeengt und auf -78 °C gekühlt. Man erhält rotbraune Kristalle, die noch zweimal aus Ether umkristallisiert werden. Ausb.

49 mg (30%). Schmp. 124°C (Zers.). – MS: m/e = 392 (34%), M⁺ – C₂H₄), 331 [100; C₅Me₅RhP(S)Me₂⁺], 301 (6; C₅Me₅RhPS⁺), 237 (13; C₅Me₄CH₂Rh⁺).

C₁₆H₃₁P₂RhS (420.3) Ber. C 45.72 H 7.43 Gef. C 46.26 H 7.18

(Ethen)(pentamethylcyclopentadienyl)(tetramethyldiphosphan- P^2 -selenid- P^1)rhodium(I) (20): Darstellung wie für 19 beschrieben, Reaktionszeit 15 h (bei 60 °C). Man erhält rotbraune Kristalle. Ausb. 91 mg (50%). Schmp. 130 °C (Zers.). – MS: m/e = 440 (37%; M⁺ – C₂H₄), 379 [100; C₅Me₅RhP(Se)Me₂⁺], 360 (60; C₅Me₅RhP₂Me₄⁺), 349 (6; C₅Me₅RhPSe⁺), 314 (15; C₅Me₅RhPMe₃⁺), 237 (33; C₅Me₄CH₂Rh⁺).

C₁₆H₃₁P₂RhSe (467.2) Ber. C 41.14 H 6.69 Rh 22.02 Gef. C 41.46 H 6.94 Rh 21.40

Diiodo(pentamethylcyclopentadienyl)(tetramethyldiphosphan)rhodium(III) (21): Eine Lösung von 154 mg 13 (0.40 mmol) in 10 ml Ether wird unter Rühren mit einer Lösung von 107 mg I₂ (0.42 mmol) in 20 ml Ether versetzt. Es fällt sofort ein rotbrauner Niederschlag aus, der mit Ether gewaschen und i. Vak. getrocknet wird. Nach Umkristallisation aus CH_2CI_2 /Pentan erhält man weinrote, luftstabile Kristalle. Ausb. 230 mg (94%). Schmp. 189°C. – MS: $m/e = 614 (1\%; M^+)$, 492 (44; $M^+ - P_2Me_4$), 487 (3; $M^+ - I$), 427 [3; $C_5Me_5Rh(PMe_2H)I^+$], 365 (100; $C_5Me_5RhI^+$), 237 (68; $C_5Me_4CH_2Rh^+$).

C14H27I2P2Rh (614.0) Ber. C 27.39 H 4.43 Rh 16.76 Gef. C 27.25 H 4.71 Rh 16.67

- ¹⁾ XLI. Mitteil.: H. Werner und W. Paul, J. Organomet. Chem. 236, C 71 (1982)...
- ²⁾ H. Werner, Pure Appl. Chem. 54, 177 (1982).
- ³⁾ H. Werner und W. Hofmann, Chem. Ber. 110, 3481 (1977).
- ⁴⁾ H. Werner, R. Feser und W. Buchner, Chem. Ber. 112, 834 (1979).
- ⁵⁾ H. Werner, B. Heiser, B. Klingert und R. Dölfel, J. Organomet. Chem. 240, 179 (1982).
- ⁶⁾ P. M. Maitlis, Chem. Soc. Rev. 10, 1 (1981).
- 7) W. A. Herrmann, Adv. Organomet. Chem. 20, 160 (1982).
- 8) H. Werner und B. Klingert, J. Organomet. Chem. 218, 395 (1981).
- ⁹⁾ ⁹a) K. Moseley, J. W. Kang und P. M. Maitlis, J. Chem. Soc. A 1970, 2875; ^{9b)} J. W. Kang und P. M. Maitlis, J. Organomet. Chem. 26, 393 (1971).
- ¹⁰ R. Feser, Dissertation, Univ. Würzburg 1981; R. Feser und H. Werner, Publikation in Vorbereitung.
- ¹¹ ¹¹^a) H. Werner und R. Feser, Angew. Chem. **91**, 171 (1979); Angew. Chem., Int. Ed. Engl. **18**, 157 (1979); ¹¹^b) H. Werner und R. Feser, J. Organomet. Chem. **232**, 351 (1982).
- 12) H. Werner, R. Feser, W. Paul und L. Hofmann, J. Organomet. Chem. 219, C 29 (1981).
- ¹³⁾ H. Werner, O. Kolb, R. Feser und U. Schubert, J. Organomet. Chem. 191, 283 (1980).
- ¹⁴⁾ H. Werner und O. Kolb, Angew. Chem. **91**, 930 (1979); Angew. Chem., Int. Ed. Engl. **18**, 865 (1979).
- ¹⁵⁾ ^{15a)} P. Diversi, G. Ingrosso und A. Lucherini, J. Chem. Soc., Chem. Commun. 1977, 52. ^{15b)} P. Diversi, G. Ingrosso, A. Lucherini, P. Martinelli, M. Benetti und S. Pucci, J. Organomet. Chem. 165, 253 (1979).
- 16) J. T. Malito, R. Shakir und J. L. Atwood, J. Chem. Soc., Dalton Trans. 1980, 1253.
- 17) J. W. Kang, K. Moseley und P. M. Maitlis, J. Am. Chem. Soc. 91, 5970 (1969).
- ¹⁸⁾ C. White, S. J. Thompson und P. M. Maitlis, J. Chem. Soc., Dalton Trans. 1977, 1654.
- ¹⁹⁾ R. Cramer, Inorg. Synth. 15, 14 (1974).
- ²⁰⁾ A. van der Ent und L. Onderdelinden, Inorg. Synth. 14, 92 (1973).

[246/82]